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Main Points

• In systems engineering, probability distributions whose values are
uncertain must often be specified by expert technical opinion

• In the absence of meaningful (or historical) data, expert opinion is
often the only way to quantify a variable’s uncertainty

• Instead of assigning a single subjective probability to an event, subject
experts often find it easier to describe a function that depicts a
subjective distribution of probabilities

• Such a distribution is sometimes called a subjective probability
distribution

• Because of their nature, subjective probability distributions can be
thought of as “belief functions” – mathematical representations of a
subject expert’s best professional judgment in the distribution of
probabilities for a particular event
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Main Points

• When formulating a subjective probability distribution to describe the
uncertainty in a variable’s value, subject experts often prefer
specifying a range that contains most, but not all, possible values

• Thus, there is a nonzero probability that values will occur outside the
expert’s specified range

• One strategy for specifying a subjective probability distribution
involves the direct assessment of the distribution’s fractiles

• Another strategy involves assigning a subjective probability to a
subinterval of the range of the distribution function

• This talk illustrates these strategies in the context of new formulas for
specifying beta, uniform, and triangular distributions from only partial
information about their ranges of values; four cases will be represented
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Subjective Probabilities and Distribution Functions

• In systems engineering, probabilities are often used to quantify
uncertainties associated with a system’s design parameters (e.g.,
weight), as well as uncertainties in cost and schedule

• For reasons previously mentioned, quantifying these uncertainties is
often done in terms of subjective probabilities

• Subjective probabilities are those assigned to events on the basis of
personal judgment; they measure a person’s degree of belief that an
event will occur

• Subjective probabilities are most often associated with one-time, non-
repeatable, events – those whose probabilities cannot be objectively
determined from a population of outcomes developed by repeated
trials, observations, or experimentation
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Subjective Probabilities and Distribution Functions

• Subjective probabilities cannot be arbitrary; they must adhere to the
three fundamental axioms of probability

Axiom 1 states the probability of any event is a nonnegative number in the interval zero to unity.
Axiom 2 states that P(Ω)  is equal to unity, where the sample space Ω  is sometimes referred to
as the sure or certain event.  Axiom 3 states for any sequence of mutually exclusive events, the
probability of at least one of these events occurring is the sum of the probabilities associated with
each event Ai .  In axiom 3, this sequence may also be finite.

• For instance, if an electronics engineer assigns a probability of 0.7 to
the event “the number of gates for the new processor chip will not
exceed 12,000,” it must follow that the chip will exceed 12,000 gates
with probability 0.3

• Subjective probabilities are conditional on the state of the person’s
knowledge which changes with time

• To be credible, subjective probabilities should only be assigned to
events by subject experts - persons with significant experience with
events similar to the one under consideration
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Subjective Probabilities and Distribution Functions

• In addition, the rationale supporting the assigned probability must be
well documented

• Imposing a disciplined approach to defining and documenting
subjective probabilities lessens the chance of encountering the “village
watchman”
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Beta Distribution Case

• The beta distribution has long been the distribution of “choice” for
specifying subjective probability distributions

• It can take a wide variety of forms, as seen in the figures below
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Beta Distribution Case

• The beta distribution can be used to describe a random variable (e.g.,
weight, lines of code, schedule) whose range of possible values is
bounded by an interval of the real line

• A random variable X is said to have a nonstandard beta distribution if
its probability density function is given by
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1

b − a

Γ(α + β)

Γ(α)Γ(β)

x − a

b − a

 
  

 
  

α −1 b − x

b − a

 
  

 
  

β −1
a < x < b

0 otherwise

 

 
  

 
 
 

(4-8)

where α and β (α > 0 and β > 0) determine the shape of the density
function and Γ(α ) is the gamma function of the argument α

• A random variable X with density function given by Eq 4-8 will be
implied by the expression ),,,(~ baBetaX βα
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Beta Distribution Case

• A random variable Y is said to have a standard beta distribution if its
probability density function is given by

fY (y) =

Γ(α + β)
Γ(α)Γ(β)

(y)α −1(1 − y)β−1 0 < y < 1

0 otherwise
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(4-9)

• A random variable Y with density function given by Eq 4-9 will be
implied by the expression ),(~ βαBetaY

• The transformation of ),,,(~ baBetaX βα ),(~ βαBetaY

)/()( abaxy −−=

Prob(Y y  yi) = i = Prob(X y  xi)

Prob(Y y  yj) = j = Prob(X y  xj)

fY(y)

0 yi yj 1
y

Y ~ Beta(αα, ββ)



10

From Garvey, P. R.,  “Probability Methods for Cost Uncertainty Analysis-A Systems Engineering Perspective”, published by Marcel Dekker, Inc.,
270 Madison Avenue, New York, NY, 10016-0602, 2000; ©Marcel Dekker, Inc., All Rights Reserved; http://www.dekker.com/e/p.pl/8966-0.

Specifying Probability Distributions From
Partial Information on their Ranges of Values…Beta Distribution

The value xα is called the α-fractile of X if
αα =≤ )( xXP

• Case 1:  Specify a nonstandard beta distribution for the random
variable X given the shape parameters α and β and any two fractiles xi

and xj , where 0 ≤ i < j ≤ 1; an illustration of this case is presented in
figure 4-20

• Purposes:  To determine the minimum possible value of X, denoted by
a, and the maximum possible value of X, denoted by b, where X ~
Beta(α, β, a, b).  To compute E(X) and Var(X) from the specified
distribution



11

From Garvey, P. R.,  “Probability Methods for Cost Uncertainty Analysis-A Systems Engineering Perspective”, published by Marcel Dekker, Inc.,
270 Madison Avenue, New York, NY, 10016-0602, 2000; ©Marcel Dekker, Inc., All Rights Reserved; http://www.dekker.com/e/p.pl/8966-0.

Specifying Probability Distributions From
Partial Information on their Ranges of Values…Beta Distribution

• We are given α and β and any two fractiles xi and xj; since

where xi and xj are from X ~ Beta(α, β, a, b); yi and yj are from Y ~ Beta(α, β) and

a =
xiy j − x j yi

y j − yi
(4-48)

b =
x j (1 − yi ) − xi (1− y j )

y j − yi
(4-49)

Minimum value of X

Maximum value of X

Prob(Y y  yi) = i = Prob(X y
xi)Prob(Y y  yj) = j = Prob(X y
xj)

yi = (xi - a)/(b - a)

yj = (xj - a)/(b - a)
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Beta Distribution

• Practical Example
Suppose I represents the uncertainty in the number of delivered source instructions (DSI) for a
new software application.  Suppose a team of software engineers judged 100,000 DSI as a
reasonable assessment of the 50th percentile of I and a size of 150,000 DSI as a reasonable
assessment of the 95th percentile.  Furthermore, suppose the distribution function in figure 4-21
was considered a good characterization of the uncertainty in the number of DSI.
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Beta Distribution

• Practical Example (concluded):

We are given that Prob(I y  x0.50  = 100,000) = 0.50 and Prob(I y  x0.95  = 150,000) =

0.95.

Since α = 2 and β = 3.5, the standard beta distribution is Y ~ Beta (2, 3.5); from this we

can determine the fractiles y0.50  and y0.95.  Using a tool such as Mathematica® we have

y0.50 = 0.346086 and y0.95 = 0.70189.  Substituting these values into equations 4-48 and

4-49 provides the minimum and maximum possible values for I.

Use the Mathematica® routine Quantile[BetaDistribution[2,3.5],k] where k is 
equal to 0.50 and 0.95, respectively, to obtain the two “y” fractiles.
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Uniform Distribution

• Case 2:  Specify a uniform distribution for the random variable X given
the subinterval a ≤ x ≤ b¢ and α where a is the minimum possible
value of X and

b¢ < b, and α = Prob(a ≤ X ≤ b¢ )

an illustration of this case is presented in figure 4-22

• Purposes:  To determine the maximum possible value of X, denoted by
b.  To compute E(X) and Var(X) from the specified distribution

• Required Information:
Assessments of α and the endpoints
of the subinterval a ≤ x ≤ b¢

ans.  The maximum value of X is
b = a + (b¢  - a)/ α
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Uniform Distribution

• Case 3:  Specify a uniform distribution for the random variable X given
the subinterval a¢ ≤ x ≤ b¢ and α where

a < a¢  , b¢ < b, and α = Prob(a¢ ≤ X ≤ b¢ )

an illustration of this case is presented in figure 4-24

• Purposes:  To determine the minimum possible value of X, denoted by
a, and the maximum possible value of X, denoted by b.  To compute
E(X) and Var(X) from the specified distribution

• Required Information:
Assessments of α and the endpoints
of the subinterval a¢ ≤ x ≤ b¢ ;
furthermore, assume a¢ − a = b -
b¢
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Uniform Distribution

If P( ′ a ≤ X ≤ ′ b ) = α <1 , the minimum and maximum possible values of X are

a = ′ a −
1 −α
2α

( ′ b − ′ a ) (4-53)

b = ′ b +
1 −α
2α

( ′ b − ′ a ) (4-54)

Notice that ′ a − a = b − ′ b .  Furthermore, for this case we have

P(a ≤ X < ′ a ) = P( ′ b < X ≤ b) = 1
2 (1 −α )
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Triangular Distribution*

• Case 4:  Specify a triangular distribution for the random variable X
given m, the subinterval a¢ ≤ x ≤ b¢, and α where

a < a¢  , a¢ ≤ m ≤ b¢ , b¢ < b, and α = Prob(a¢ ≤ X ≤ b¢ )

an illustration of this case is presented in figure 4-26

• Purposes:  To determine the minimum possible value of X, denoted by
a, and the maximum possible value of X, denoted by b.  To compute
E(X) and Var(X) from the specified distribution

• Required Information:
Assessments of α and the
endpoints of the subinterval
a¢ ≤ x ≤ b¢, where a¢ ≤ m ≤
b¢

* This case was developed by Dr. C. C. Cho, 
The MITRE Corporation, Bedford, MA
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Specifying Probability Distributions From
Partial Information on their Ranges of Values…Triangular Distribution
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Assuming that

If P( ′ a ≤ X ≤ ′ b ) = α <1 , the minimum and maximum possible values of X are

a = m −
m − ′ a 

1 − 1− α
(4-55)

b = m +
′ b − m

1 − 1− α
(4-56)
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Summary

http://members.home.net/asb/Loony.htm
http://landru.i-link-2.net/debbie/looney/porky.html

“That’s all Folks!”...


